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Abstract. Water body classification is a topic of great interest, especially for the effective
management of floods. Synthetic aperture radar (SAR) imaging has demonstrated a great
potential for water monitoring, given its capacity to register images independent of weather
conditions. Several algorithms for water detection using SAR images are based on optimal
thresholding techniques. However, these simple methodologies produce false classification
results when small water bodies embedded in mountain ranges are presented in the image.
We present an unsupervised and easy-to-implement methodology, based on local Moran index
of spatial association in combination with morphological closing operations, for inland water
body extraction. According to several experiments, we demonstrate that our method is capable of
effectively extracting lakes and rivers located at different land surface reliefs without the require-
ment of a training step. In addition, comparisons with the state-of-the-art techniques demonstrate
the effectiveness of our procedure, performing an overall accuracy of 96.37% and Kappa ¼
0.927. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.13
.016524]
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1 Introduction

The study and monitoring of inland water bodies constitute a subject of great importance for
natural and human-related processes, including sustainability and risk management. As stated in
Ref. 1, inland water bodies refer to streams, canals, ponds, lakes, and reservoirs. In the past years,
different technologies have been employed for such purposes, e.g., multispectral imagery and,
more recently, radar data.

Because of data availability and spatial resolution of the collected images, the analysis of
optical imagery has become widely adopted.2 Several methods have been designed to delineate
water bodies from multispectral images, and most of them can be classified into the following
three categories:3 (1) thresholding: these methods are fast and easy to implement; however, they
tend to misclassify mountain shadows or urban areas with water bodies;4 (2) classification: these
methods are based on machine learning approaches for water body extraction, including super-
vised (artificial neural networks, support vector machines (SVMs), among others) or unsuper-
vised (Isodata, k-means) classification methods. Their main limitation resides in the fact that
reference data or trained specialist knowledge is required for proper selection of the training
samples;5,6 and (3) water indices: these methods are based on algebraic operations with specific
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spectral bands where water bodies present the highest and lowest reflectance values in the multi-
spectral data set, for example, the Normalized Difference Water Index (NDWI) or its modified
version abbreviated as MNDWI.7 Although the analysis of optical data produces accurate results,
its effectiveness is subjected to the environmental conditions of the study area. Hence, a dense
cloud cover makes difficult the classification process.

On the other hand, active remote sensors like synthetic aperture radar (SAR) systems allow
continuous monitoring of the Earth’s surface, independent of weather conditions, which makes
them suitable for flood risk predictions and natural resources management. Based on SAR sat-
ellite data, several research findings have been realized during the past years.8–10 A radar signal,
as an incident radiation, is highly sensitive to surface roughness. Because the surface water
bodies generally behave like specular reflectors, the incident radiation is backscattered away
from the radar antenna; therefore, surface water bodies appear in low intensity levels. As
water surfaces are easily distinguishable in SAR images, image thresholding is a popular method
frequently used because of its simplicity.11,12 In particular, the Otsu method13 provides an optimal
threshold for images with bimodal histograms; however, its main limitation is that it fails in
images showing unimodal histograms, which is the case of small water bodies embedded in
complex reliefs, e.g., mountain ranges. To overcome this problem, some authors have proposed
additional thresholding methods capable of working with both unimodal and bimodal histo-
grams, known as valley-emphasis (VE) methods.14–16

Other methodologies based on radar image analysis have been proposed in the literature. For
instance, an algorithm for open water and sea ice discrimination based on segmentation and local
intensity autocorrelation for Radarsat-1 images is presented in Ref. 8. The use of texture analysis
to discriminate between oil and water in radar imagery is proposed in Ref. 17. According to
Ref. 9, the authors propose the use of gray-level co-occurrence matrix (GLCM)-based features
combined with a SVM to extract water regions. Similarly, a method for the separation between
land and water that uses region-based level sets is proposed in Ref. 10. However, the presence of
shadows produced by mountains or buildings in radar imagery makes the accurate extraction of
water bodies difficult. Because of their similarity in image intensity, the existing algorithms
classify shadows as water. To improve the mapping results, some authors have proposed the
employment of ancillary information, e.g., digital elevation models,18 an additional optical
image,19 laser altimetry,20 or, alternatively, geographic information systems data.21

The aim of this paper is to present an easy-to-implement technique, based on local Moran
index in combination with morphological closing operations, for automatic extraction of inland
water bodies that are embedded in different geographical areas. Based on experiments using
Sentinel-1 data, we demonstrate that our method achieves high classification results, which
are competitive with or superior to other state-of-the-art techniques. It should be noted that
the potential of local Moran index of spatial association for the extraction of water surfaces
had not been considered in previous researches. In comparison with similar works, our technique
does not require user intervention, and, although it is not as sophisticated as machine learning
methods, it is capable of working effectively in mountain reliefs, which has been the main
limitation of related methods.

2 Mathematical Preliminaries

2.1 Fundamental Morphological Operations

In mathematical morphology, the well-known operations of erosion and dilation are used to
shrink or grow objects in a given image through small shapes known as structuring elements.
Formally, erosion of a gray-scale image fðx; yÞ by a flat structuring element b is defined accord-
ing to the expression:

EQ-TARGET;temp:intralink-;e001;116;129½f ⊖ b�ðx; yÞ ¼ min
fu;v∈bg

ffðxþ u; yþ vÞg: (1)

In the aforementioned equation, x and y are incremented through u; v ∈ b so that the origin
of b visits every pixel of fðx; yÞ. Hence, the erosion is obtained as the minimum value of fðx; yÞ
from all the values of the region, where b coincides with the image.
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On the other hand, the dilation of fðx; yÞ by a flat structuring element b is obtained as the
maximum value of the image in the region where b̂ overlaps f, where the origin of b̂ is at ðx; yÞ.
Mathematically,

EQ-TARGET;temp:intralink-;e002;116;699½f ⊕ b�ðx; yÞ ¼ max
fu;v∈bg

ffðx − u; y − vÞg: (2)

The notation b̂ ¼ bð−x;−yÞ refers to the fact that the structuring element should be reflected
with respect to its origin.22 However, in the case of a symmetric structuring element with a speci-

fied size and shape, we have that b̂ ¼ b.
Previous operations can be combined to define more complex morphological algorithms.

In particular, the closing of fðx; yÞ by structuring element b, denoted as f • b, is realized
by the dilation of f followed by an erosion operation with b, such as

EQ-TARGET;temp:intralink-;e003;116;584f • b ¼ ðf ⊕ bÞ ⊖ b: (3)

In a similar way, the opening of fðx; yÞ by structuring element b, denoted as f ∘ b, is
expressed as

EQ-TARGET;temp:intralink-;e004;116;528f ∘ b ¼ ðf ⊖ bÞ ⊕ b: (4)

Although both operations smooth contours of an image, the closing operation is used to
emphasize bright pixels, while attenuating dark features. Hence, the degree of attenuation
depends on the relative size of the structuring element b in relation with the image features
to be analyzed.

Previous mathematical morphology operations have been used as the basis for feature extrac-
tion algorithms in different applications, including the elimination of noise generated by speckles
present in SAR images,23 and as a restoration tool for damaged color documents.24

2.2 Local Moran Index of Spatial Association

A local indicator of spatial association (LISA) is any statistic satisfying the following two char-
acteristics: (1) for each observation, it is an indicator of the extent of significant spatial clustering
of similar values around the observation; (2) it allows assessment of the influence of individual
locations on the magnitude of the global statistic.25 There exist several LISA indices, from which
the most useful are the Geary ci, the Getis-Ord Gi, and the Moran Ii indices, respectively.

LISA statistic has been used for different applications, such as the evaluation of statistical
characteristics of different land cover classes,26 the analysis of the type of association among
neighboring spatial units in geographical information,27 the objective function for measuring the
quality of region growing image segmentation algorithms,28 and more recently, as image features
for human settlement delineation in remote sensing data.29,30 However, to the best of our knowl-
edge, the application of LISA indices for the automatic extraction of water bodies has not been
studied in the current literature.

The local Moran index (Ii) evaluates the similarity between a given target value xi and its
neighbors xj that have a nonzero connection to it, providing a measure of local homogeneity.
Formally, given a set X ¼ fxi; : : : ; xng of observed values, a local Moran statistic for an obser-
vation i is defined as

EQ-TARGET;temp:intralink-;e005;116;183Ii ¼
zi
σ2

Xn
j¼1

wijzj ¼
xi − x
σ2

Xn
j¼1

wijðxj − xÞ; (5)

where x ¼ P
n
i¼1 xi∕n is the mean value, σ2 ¼ P

iðxi − xÞ2∕n is the variance, and zi and zj are
deviations from the mean. It can be noticed in Eq. (5) that a weight matrix W is employed to
measure the spatial associations, i.e., weights wij define neighborhood relations, where wij ¼ 1

means the presence of connection and wij ¼ 0 means the absence.25,29 The most common con-
figurations are the rook ðWrookÞ, bishop ðWbishÞ, and queen ðWqueenÞ cases, shown, respectively,
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EQ-TARGET;temp:intralink-;e006;116;473Wrook ¼
0
@

0 1 0

1 0 1

0 1 0

1
A; Wbish ¼

0
@

1 0 1

0 0 0

1 0 1

1
A; Wqueen ¼

0
@

1 1 1

1 0 1

1 1 1

1
A: (6)

To compute the local Moran index from a given image Iðx; yÞ of size m × n, Eq. (5) is
computed for x ¼ 1; : : : ; m and y ¼ 1; : : : ; n; hence, spatial similarity can be determined by
3 × 3 pixel neighborhoods using one of the previous weight matrices. Algorithm 1 presents
this process in pseudocode form.

3 Hybrid Moran-Morphological Approach to Delineate Inland Waters

According to its mathematical definition, local Moran index of spatial association allows the
identification of spatial clusters of similar values. For example, when the scatterers in a radar
image share similar intensity levels within a given group, elements like uniform man-made
structures, water bodies, and other image objects with homogeneous texture are easily extracted
by local Moran Ii. Furthermore, based on the fact that mountain peaks and man-made structures
can be highlighted in a radar image by the use of morphological closing operations [Eq. (3)]
with an appropriate structuring element b, a masking process may help in isolating the water
bodies.

To clarify the aforementioned ideas, let us consider a gray-level subimage extracted from the
study site 1 [see Fig. 1(a)]; this selected region is composed of a water body in the center and
mountain reliefs in the surrounding areas. By computing the local Moran index from the image,
clusters of similar intensity values are clearly extracted [shown in yellow color of Fig. 1(b)].
Moreover, Fig. 1(c) displays the result of the closing operation with a symmetric structuring
element (a disk of unit height and radius of 3 pixels). Notice that mountain peaks are clearly
highlighted in the resulting image. Finally, the normalized difference between these last images
allows the extraction of the region with the lowest intensity level, associated with the water
surface [shown in Fig. 1(d)].

With respect to the example shown in Fig. 1, it is natural to ask about the influence of the
structuring element on the extraction results. In particular, to determine the most appropriate
geometry for the structuring element, the aforementioned process is implemented using different
structuring elements of unit height: a disk of radius of 3 pixels, a square of 4 × 4 pixels, and a
rectangle of 6 × 3 pixels, respectively. For each case, a binary version of the resulting image is
produced with τ ¼ 0.8 as a threshold value. Finally, the number of connected components

Algorithm 1 Local Moran index computation.

Inputs: I and W 3×3 ▹ gray-scale Image and a 3 × 3 kernel

Output: Fmor ▹ Local Moran image

procedure MORAN_INDEX ðI;W Þ

ðm; nÞ←sizeðIÞ ▹ Rows and columns of the input image

μ←
Pm;n

x;y¼1 Iðx; yÞ∕mn ▹ Image mean computation

F←I − μ · onesðm;nÞ ▹ Mean removal from the input image

σ2←
Pm;n

x;y¼1 ½F ðx; yÞ�2∕mn ▹ Variance calculation

Z←conv2ðF ;W Þ ▹ Two-dimensional (2-D) convolution with W

Z j←Z ð2∶m þ 1;2∶n þ 1Þ ▹ Cropped convolution result

Z i←F∕σ2

Fmor←Z i⊙Z j ▹ Entrywise product of Z i and Z j

end procedure
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appearing at each binary result is determined. According to Table 1, a disk shape produced the
least number of connected components, stating that this geometry allows the masking out of
more artifacts associated with mountain reliefs.

Therefore, the following methodology is proposed to extract water bodies from a calibrated
radar image fðx; yÞ, whose intensity levels represent backscattering information. First, linear
stretching of the histogram of input fðx; yÞ is realized by clipping out 2% of both the left
and the right tails. Thus, the output image will have a working dynamic range in the interval
[0,255]. Then, the computation of the local Moran index Ii [Eq. (5)] at every pixel position of f
using the Rook case is required (according to our experiments, the Rook configuration has
shown the best results for water extraction); the resulting image will be denoted as fmor.
The third step performs the closing operation of f with a structuring element b [Eq. (3)],
with a minimum size of 3 pixels. The size and shape of the structuring element are user-defined
and will depend on the particle’s sizes to be removed (we have verified that a disk-structuring
element provides good results); the resulting image will be defined as fclose. For further process-
ing, normalization of both fmor and fclose in the range of [0,1] is required in step four. Finally, the
last step refers to masking out structures that do not correspond to water bodies from the Moran
image, according to the expression

Table 1 Effects of structuring element shapes on the extraction algorithm.

Shape Dimensions (pixels) Connected components

Disk Radius ¼ 3 4

Square 4 × 4 7

Rectangle 6 × 3 7

Fig. 1 Performance of the proposed methodology for water body extraction; (a) a gray-level sub-
image taken from the study site 1; (b) local Moran index image computed from the subimage in (a);
(c) morphological closing operation with a disk-structuring element of unit height and radius of
3 pixels; and (d) normalized difference between the images in (b) and (c).
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EQ-TARGET;temp:intralink-;e007;116;545fwb ¼
fmor − fclose
fmor þ fclose

; (7)

where fwb represents the image where water bodies are located. The resulting image has the
following characteristics: (1) water bodies are represented by values close to 1, (2) mountains
and shadows are diminished according to the size of structuring element b, and (3) a simple
thresholding process of the maximum values allows the isolation of water bodies. The following
Algorithm 2 presents this process in pseudocode form.

4 Study Areas and Image Sets

In this research, four study sites along important rivers and lakes of Mexico are chosen.
Figure 2 displays a reference map showing the location of the different study sites described
here.

Algorithm 2 Water body detection.

Inputs: F , W 3×3, b ▹ Gray-scale SAR image, a 3 × 3 kernel

▹ and a structuring element b

Output: Fwb ▹ Image with water regions

procedure WATER_DETECTION ðF ;W ; bÞ

F close←ðF ⊕ bÞ ⊖ b ▹ Morphological closing operation

Fmor←MORAN_INDEXðF ;W Þ ▹ Perform Algorithm 1

Fwb←ðFmor − F closeÞ∕ðFmor þ F closeÞ

end procedure

Fig. 2 Reference map with the locations of the four study sites discussed here.
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The first study area covers different inland water bodies embedded in mountain reliefs
around the Nevado de Toluca volcano in Mexico. Centered at 19.242° latitude and
−100.216° longitude, the area belongs to a region known as the State of Mexico, the most
densely populated state in the country. Some characteristics of the site are the following:
mountain reliefs are clearly marked in the radar image causing the appearance of shadows
and the zone contains water bodies of different areas. Hence, the idea of selecting this region
is to verify the functionality of the procedure to distinguish water bodies from small mountain
shadows (see Fig. 3).

The second study area, centered at 24.714° latitude and −104.569° longitude, covers the
Santiaguillo Lagoon, located in the State of Durango in the northwest part of Mexico. The
lagoon is conformed by two large water bodies, with a total extend area between 27,000 and
29,000 ha. Each winter, the lagoon receives thousands of aquatic birds coming from United

Fig. 3 Sentinel-1 images with VH + VV polarization (left and right columns, respectively) used in
our experiments; (a)–(b) Nevado de Toluca area; (c)–(d) Santiaguillo Lagoon; (e)–(f) a small part
of Lerma River; and (g)–(h) a portion of the Grijalva River.
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States of America and Canada; thus, the site has a great importance for its biological character-
istics and ecosystems.31

The third site, registered at 19.998° latitude and −100.438° longitude, covers a portion of the
Lerma River; Lerma is 708-km long and is one of the longest rivers in the country; it originates
from the springs of Almoloya del Río (State of Mexico) and passes through Michoacán,
Guanajuato, and Jalisco States, providing water and electric energy to Mexico City.

Finally the last study site, centered at 17.2125° latitude and −93.572° longitude, covers a
portion of the Grijalva River, including a large artificial lake created by the hydroelectric
Malpaso dam. Grijalva River is 480-km long and flows from Chiapas to Tabasco States through
the Sumidero Canyon, becoming the second largest river in Mexico. Table 2 displays the main
characteristics of the previous data sets, including sensing date, the Sentinel platform, and the
acquisition mode.

5 Methodology

In this paper, we have performed several experiments using dual polarization radar images
(VH + VV) collected by the European satellites named Sentinels, which operate at C-band
(λ ∼ 5.546 cm). Sentinel-1A and -1B imaging systems may collect data in four modes with
a variety of swath widths, depending on the application. The main acquisition mode over
land is known as interferometric wide (IW) swath, with a swath width of 250 km. In addition,
both SAR instruments can operate in single polarization (HH or VV) and dual polarization
(HH + HV or VV + VH), covering the Earth’s surface in periods of 6 days.

The amplitude of the SAR signal that has been detected, multilooked, and projected to
ground range using an Earth ellipsoid model is stored in level-1 ground range detected (GRD)
products.32 Spatial resolution for GRD products depends on the acquisition mode, ranging
from 9 × 9 to 93 × 87 m. In the current application related to inland water body extraction,
GRD data sets are of high-resolution IW type, with VV + VH polarization, and a spatial
resolution of 20 × 22 m.

5.1 Preprocessing Steps

To derive calibrated backscattered coefficients from the raw data, all GRD products were cor-
rected according to standard processes.33 First, radiometric calibration to sigma naught values
was realized; speckle filtering with a Lee mask of size 7 × 7 was performed to reduce inherent
noise associated with the SAR signal. With the aim to compensate geometric distortions due to
terrain effects, the data were terrain-corrected to improve the geolocation accuracy of the image
sets.33 In the last step, the obtained sigma naught values were converted to decibel scale to
improve image visualization and analysis. All these processes were realized through the
European Space Agency’s Sentinel Application Platform software.

5.2 Selection of the Optimal Polarization

Although the SAR signal is suitable for water bodies identification, there exist other factors that
can diminish the contrast between water and the surrounding areas; these factors include

Table 2 Characteristics of Sentinel-1 image sets used in our experiments.

Study site Sensing date Sentinel Mode

Nevado de Toluca August 08, 2017 1A Ascending

Santiaguillo February 02, 2018 1A Ascending

Lerma January 11, 2018 IB Ascending

Grijalva December 27, 2017 1A Descending
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(1) roughness of the water surface, (2) wavelength of the incident signal, and (3) polarization.34

The effects of winds and currents in the water bodies could lead to the appearance of roughness
in their surfaces, increasing the backscattered signal. As a consequence, a lower contrast between
the water bodies and their surroundings can be obtained.

With respect to polarization, we have verified that for smooth surfaces VV-polarization
images improve the contrast between water and land compared to cross-polarization images.
However, VH-polarization images were less affected by surface roughness caused by winds
and currents.35–37 To provide deeper insights to these points, the effects of polarization on the
calculation of local Moran index were studied. Thus, for all study cases fmor images were
obtained from VV- and VH-polarization data, respectively. Although water regions were clearly
highlighted in both cases, a misclassification between water and ice classes occurred for the
study site 3 in the VH-polarization image. As a consequence, the general performance of
the extraction algorithm was seriously affected. Figure 4 displays water bodies extracted
from VV- and VH-polarization images.

As a way to determine the optimal polarization for our application, classification results for
both polarizations in the study site 3 were assessed by means of control points extracted from a
Sentinel-2 image (more details are explained in Sec. 6). Such control points allowed for the
determination of the overall accuracy and Kappa coefficient for each case. As the highest per-
formance was obtained for the VV-polarization (overall accuracy ¼ 96.2% and Kappa ¼ 0.88)
compared to the VH-polarization (overall accuracy ¼ 87.7% and Kappa ¼ 0.68), we concluded
that the former was the adequate polarization to be used as an input to our process.

6 Experimental Results

Following the process outlined in Sec. 3, water bodies detection is realized for every study case
by means of a disk-structuring element of unit height. Figure 5 displays, in yellow tones, water
bodies extracted with the proposed algorithm. The resulting images are displayed as color maps
to emphasize the numerical differences between water and land areas. It can be noticed that water
bodies that are embedded in different geographical areas have been correctly delineated by our
proposal. In particular, in the Nevado de Toluca image, mountains and other reliefs are consid-
erably reduced.

To provide a general idea of the overall accuracy of the proposed technique, optical image
sets registered by Sentinel-2 at 10-m spatial resolution were employed. For this purpose, we
downloaded image sets with the minimum percentage of cloud cover. The available optical
images were calibrated using the sen2cor plug-in to derive the spectral reflectance of land covers.
Figure 6 displays a false color version of the corresponding images.

With the aim to extract control points to be used as ground-truth regions for both water and
land classes, the normalized difference water index was computed for each image set. This image
was used as a guide to select water/land regions, which were used as seed points for a supervised
classification process via a SVM. From the classification result, around 50,000 pixels per class
were randomly selected as ground-truth points. Based on these points, confusion matrices were
computed. Table 3 displays the overall accuracy and the Kappa coefficient for each case. It
should be noted that the Kappa coefficient (ranging from 0 to 1) measures the agreement between
true land covers and the obtained classification results.38

Fig. 4 Water bodies extracted by the proposed algorithm from images with different polarizations:
(a) VH-polarization and (b) VV-polarization.
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Fig. 6 Sentinel-2 images registered over the study areas. Bands 8 (λ0 ¼ 842 nm), 3
(λ0 ¼ 560 nm), and 2 (λ0 ¼ 490 nm) are used as the red, green, and blue channels to produce
false color images: (a) Nevado de Toluca, (b) Santiaguillo Lagoon, (c) Lerma River, and
(d) Grijalva River.

Fig. 5 Extraction of inland water bodies from Sentinel-1 data sets with VV polarization: (a) Nevado
de Toluca area, (b) Santiaguillo Lagoon, (c) Lerma River, and (d) Grijalva River. In the images,
yellow to blue tones represent, respectively, 1 to −1 values.

Table 3 Accuracy assessment of the proposed method for the four study sites using Sentinel-2
data as reference.

Study site

Water Land

Overall
acc. (%) Kappa

Prod.
acc. (%)

User.
acc. (%)

Prod.
acc. (%)

User.
acc. (%)

Nevado de Toluca 85.68 99.89 99.96 94.57 95.9 0.89

Santiaguillo 95.36 99.93 99.71 83.78 96.2 0.88

Lerma 97.04 99.68 99.65 96.78 98.2 0.96

Grijalva 98.32 99.93 99.68 97.24 98.8 0.97
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7 Accuracy of the Proposed Method

With an aim of comparing the performance of the proposed technique with the state-of-the-art
methods, another radar image, registered on October 5, 2017, over southwest Manitoba, Canada,
was employed. The area of analysis, composed of numerous surface water bodies, agricultural
crops, intermingled with grassland, and forests, was previously studied and evaluated by the
authors in Ref. 35. Hence, we believe that the site is appropriate to perform some comparison
experiments.

Following the procedure stated by different authors, ground-truth points of water and land
areas were randomly collected from a higher resolution Sentinel-2 image (10 m of spatial res-
olution), registered on October 6, 2017. For this purpose, a total of 139,368 control points were
extracted and manually inspected from an infrared false color image produced by a combination
of bands 8 (λ0 ¼ 842 nm), 3 (λ0 ¼ 560 nm), and 2 (λ0 ¼ 490 nm). Therefore, 65,320 points
corresponding to water class and 74,048 pixels to background areas were collected. Figure 7
shows a false color version of the Sentinel-2B image that was employed to collect ground-
truth points (water bodies can be observed as blue tones), whereas Fig. 8(a) displays the
VV-polarization SAR image used in this experiment.

Three methods used in the current literature are selected for comparison purposes, whose
characteristics are briefly described. The first technique, known as the texture method, corre-
sponds to a semiautomatic methodology based on an initial k-means clustering analysis, fol-
lowed by a histogram analysis on the entropy texture image. According to the authors, the
look for an optimal threshold on the entropy image produces better results than those obtained
with the intensity image.35 The second method, known as VE, represents a revised version of
the Otsu optimal thresholding method that is capable of working with images with both unim-
odal and bimodal histograms.14 In addition, an improved version of the previous method, known
as modified valley emphasis (MVE), is proposed to enhance the weighting effect by the

Fig. 7 Calibrated Sentinel-2B image registered over Manitoba, Canada, from which reference
points are collected; bands 8 (λ0 ¼ 842 nm), 3 (λ0 ¼ 560 nm), and 2 (λ0 ¼ 490 nm) are used
as the red, green, and blue channels to produce the false color image. Water bodies are classified
and highlighted in blue color for visualization purposes.

Fig. 8 Performance of different methods for water body extraction: (a) input VV-polarization SAR
image registered over Manitoba, Canada, (b) result of our proposal, (c) performance of the texture
method, and (d) MVE result.

Valdiviezo-Navarro et al.: Inland water body extraction in complex reliefs from Sentinel-1. . .

Journal of Applied Remote Sensing 016524-11 Jan–Mar 2019 • Vol. 13(1)



introduction of a Gaussian weighting scheme in the objective function. The author in Ref. 16
demonstrated the effectiveness of the approach for water bodies classification in China.

Classification results obtained for our proposed method and those used for comparison pur-
poses were assessed by means of confusion matrices computed based on the ground-truth points;
for each case, producer’s accuracy and user’s accuracy for both classes, Kappa coefficient, and
the overall accuracy were calculated. Table 4 displays these results. According to the previous
results, it is easy to note that the highest Kappa coefficient was achieved by our proposal, fol-
lowed by the texture method. VE was not able to determine an optimal threshold to separate
water and land classes, showing the lowest Kappa value. Figure 8 displays the classification
results obtained for our hybrid approach, the texture method, and MVE, respectively.

During the implementation of the texture method for comparison purposes, some drawbacks
are found, which we discuss in the following: (1) to ensure an optimal threshold selection, the
algorithm needs to select iteratively subimages containing a sufficient proportion of land and
water classes. The size of the subdivisions is user-defined and, therefore, time-consuming;
(2) the authors show that a better classification performance is achieved when histogram analysis
is realized on the entropy image rather than on the intensity image; however, the method does not
specify the optimal parameters to compute the entropy image, i.e., the distance d, angle ϕ, and
quantization levels to determine the probability of occurrence of gray levels ði1; i2Þ. Conversely,
based on the fact that our proposed algorithm does not require user intervention for selecting
optimal subdivisions, we state that it represents an unsupervised water classification method.

7.1 Comparison with Texture Descriptors

Several research papers9,35 have stated that the texture descriptors in SAR imagery improve the
water/land classification results, as water bodies behave mostly as specular reflectors. Based on
this fact, it is natural to evaluate the behavior and capabilities of local Moran index as a texture
descriptor compared to other metrics.

A technique widely adopted in image processing for texture segmentation and classification
is termed as the spatial gray-level dependence method,39 which defines 14 features based on a
GLCM. The elements of the co-occurrence matrix, ci;j, represent the number of times that a pixel
pair with gray levels i and j occur in an image f, in a relative distance d and orientation ϕ;
distance d is measured in number of pixels and ϕ is usually limited to four directions: horizontal
(0 deg), diagonal (45 deg), vertical (90 deg), and antidiagonal (135 deg).

For comparison purposes, seven GLCM-based descriptors, namely contrast, correlation,
energy, entropy, homogeneity, variance, and angular second moment (ASM), were computed
from a subimage of the study site 1 [see Fig. 9(a)]; for this purpose, such metrics were imple-
mented in regions of 7 × 7, d ¼ 3, in all directions. In a similar way, local Moran index (fmor)
was computed from the same subset. Water bodies appearing in each texture feature image were
segmented via a manual threshold.

On the other hand, a reference image was created through a segmentation process of the input
SAR subimage. As the selected subset had enough pixels belonging to the water class, the histo-
gram showed a bimodal distribution. Hence, the VE method was found to be appropriate for
optimal threshold selection. Figure 9(b) displays the segmented image used as a reference.

Table 4 Accuracy assessment for different water body extraction methods.

Method

Water Land

Overall acc.
(%) KappaProd. acc. (%) User. acc. (%) Prod. acc. (%) User. acc. (%)

Proposed 93.65 98.97 99.04 94.08 96.37 0.927

Texture 83.01 99.52 99.61 85.66 91.38 0.827

VE 100 51.6 7.95 100 53.54 0.0788

MVE 72.87 99.24 99.45 78.88 86.28 0.725
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For comparison purposes, the correlation coefficient (CC) and the Tanimoto measure (TM)
between each binary texture image and the reference one were computed to determine whether
the textural feature was able to extract the water information content. Table 5 displays the values
of such metrics obtained for each texture image.

Figure 9 displays the textural information obtained with Moran Ii index and the GLCM-
based descriptors. Notice in the images that Moran index is able to extract water bodies
with the minimum presence of shadows and other nonwater objects. Indeed, this result is con-
firmed by the similarity metrics displayed in Table 5.

8 Discussion and Conclusions

SAR data represent a suitable tool for fast identification and monitoring of water bodies.
Although optimal threshold-based methods are commonly used for this application, they do

Fig. 9 GLCM texture methods and local Moran index computed from a subset of study site 1:
(a) original SAR subimage, (b) binary image used as a reference, (c) local Moran index,
(d) correlation, (e) energy, (f) entropy, (g) homogeneity, (h) contrast, (i) variance, and (j) ASM.

Table 5 Comparison results of different texture methods against a reference image.

Textural method CC TM

Moran 0.876 0.785

Contrast 0.527 0.313

Correlation 0.778 0.649

Energy 0.639 0.484

Entropy 0.683 0.496

Homogeneity 0.651 0.463

Variance 0.855 0.746

ASM 0.639 0.483
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not provide satisfactory results when mountain reliefs are present in the imagery or when the
water class is small compared to the land class. Motivated by this fact, this work proposes a
hybrid technique, based on local Moran index and morphological operations, for inland
water body extraction.

Indeed, water surfaces are delineated effectively through local Moran index, whereas other
reliefs are emphasized with a morphological closing operation. Hence, a normalized difference
between both images allows the identification of water bodies with a minimum confusion of
shadows, man-made structures, and other objects.

Several application examples performed on radar data registered by Sentinel-1 helped us to
determine that VV-polarization images are more appropriate than VH-polarization data in our
technique. Experimental results for the four study sites, located at different geographical areas,
demonstrated the effectiveness of our procedure, which achieved a mean overall accuracy of
97.2%. Comparison results with the state-of-the-art techniques permitted to quantify the overall
accuracy and the Kappa coefficient for each case. Based on confusion matrices, we determined
that our proposal performed with the highest overall accuracy (96.37%) and Kappa coeffi-
cient (0.927).

Furthermore, in aiming to determine the capabilities of local Moran index to describe the
texture information of water surfaces, we performed some comparisons with the GLCM-based
features. According to the CC and the TM computed with respect to a reference image, it was
found that Moran index extracts texture related to water information, with the minimum presence
of shadows and other artifacts (CC ¼ 0.876 and TM ¼ 0.785).

Finally, some observations on the proposed technique should be considered: (a) it is an
automatic process that does not require user intervention; (b) the methodology can be applied
to single polarization images that cover inland waters in different locations; (c) it is able to work
effectively in mountain reliefs, which had been the main limitation of related methods. Although
it is designed to work with SAR data, the technique can be extended to optical imagery. Future
work contemplates the evaluation of the proposed technique in SAR data with higher spatial
resolution.
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